UV-T-RH COMBINED ENVIRONMENTAL TESTING

JET PROPULSION LABORATORY

C. C. Gonzalez

Objectives

- To determine the combined effects of controlled amounts of UV radiation, heat and humidity upon the mechanical properties of module cover materials and the electrical properties of a-Si cells
- To develop the relationships required to relate experimental results obtained in accelerated and controlled-environment tests to rield observations

Approach

- Use controlled environment for given period of time
 - Initial calibration of oven with lower-limit environments
 - 85 deg C, 10% RH, 1-2 suns UV
 - Use of increased levels for subsequent tests
- Monitor changes in selected key chemical and physical properties that are expected to control long-term performance
- Correlate controlled-environment test results with outdoor exposure

PRECEDING PAGE BLANK NOT FILMED

Description of Test Equipment

- Environmental chamber
 - Air-interchange, heat-and-refrigeration unit (-40 deg C to 175 deg C)
 - dcg C to 175 deg C)

 Varying humidity (10-100% (up to 90 deg C))
- UV lamp system
 - 2000 W UV (1-2 suns)
 - Water cooled
 - Dry-nitrogen purge

Ultraviolet Radiation Source

- Manufacturer: Canrad-Hanovia
- Type: Medium pressure mercury vapor lamp
- Lar.ip power consumption: 2100 W
- Lamp power output prior to filtering by cooling jacket: 1100 W

A STATE OF THE STA

Environmental Parameter Measurements

- UV lamp
 - Integrated measurements
 - Actinometers
 - Radiometer
 - Spectral-radiometric measurements
 - Monochrometer
 - Lamp output vs time (qualitative)
- Oven temperature (continuous)
- Relative humidity (periodic)
- Selected sample temperatures

Sample Types

- Module encapsulant & cover materials
 - Material types
 - Tedlar
 - Varying amounts of additives
 - Clear and opaque
 - EVA
 - Size and configuration
 - 3/4" x 4" bare strips
 - 4" x 4" laminated tedlar-EVA-glass coupons
 4" x 4" submodules with tedlar front cover
- Amorphous-silicon 4" x 4" submodules

Material Parameters Measured (Cover and Encapsulation Materials)

- Weight loss
 - Monitor loss of additives and volatiles
 - Correlate with shrinkage
- Changes in absorbance/transmission
 - Related to loss of absorbers and to chemical degradation (loss of transmission at 400nm related to yellowing)
- Tensile Modulus
 - May not establish rate and trend of photothermal degradation in early stages
- Visual inspection
 - Determine pliability of material by depressing laminated material

Tedlar: Percent Weight Loss Versus Time

Tedlar (Dry Oven): Percent Weight Loss Versus Time

Tedlar (Vacuum Oven): Percent Weight Loss Versus Time

Module Front Cover Material: Percent Transmission Versus Exposure Time

Changes in I-V Curves of Amorphous Silicon Cells Versus Oven Exposure

Test Results Summary

- Cover materials
 - Weight loss
 - ≤1.35% after 7-weeks exposure
 - Changes in absorbance/transmission
 - Results ranged from no change to about 15% gain after 5 weeks
 - Mechanical properties
 - Visual observations reveal no significant changes except for one case
- Amorphous-silicon cells
 - IV-curve changes
 - Average max-power loss of 10-15% after 3-5 weeks exposure

Future Work

- Refine existing test and sample measurement procedures (Develop new ones, if required)
- Use high-humidity environment and increased temperature levels
- Vary UV levels by adding/removing screens and changing sample distance to lamp
- Perform parallel sample exposures in dry-heat and vacuum ovens